Notes

Table I

SUMMARY OF HYDROGENATION EXPERIMENTS

Starting com- pound	Catalyst and solvent	Product	Yield, %	M.p., °C.	[α]D	Empirical formula	Carbo Caled.	n, % Found	Hydrog Calcd.	en, % Found	Recrystn. solvent
11	Pd/CaCO ₈ ;	111	96.5	$207.4 - 208.8^{a}$	0.0°	C21H34O2	79.19	79.09	10.76	11.06	Methanol
	pyridine	III acetate		154.8-155.6	- 9.4	$C_{23}H_{36}O_{3}$	76.62	76.83	10.07	10.25	
IV	PtO ₂ ; HAc	v	97.5	$219.0 - 220.4^{b}$	- 30.5	$C_{21}H_{36}O_2 \cdot H_2O$	74.51	74.76	11.32	11,26	MeOH-H2O
		Va		166.2-167.4	-14.2	C23H38O3	76.19	76.22	10.56	10.61	
IV	Pd/C; HAc	Va	65.0	165.8-166.8							MeOH-H2O
v	Pd/C; HAc	Va	80.0	167.6-168.0	-15.7						MeOH-H2O
VI	Pd/C; HAc	Va	68.5	166.4-167.4							MeOH-H2O
II	Pd/C; HAc	Va	97.0	167.2-168.2	-14.2						MeOH-H2O
VIII	Pd/C; HAc	IXa	70.0	$115.0 - 115.4^{\circ}$	+7.4	C23H88O2	79.71	79,78	11.03	11.06	Methanol
		IX		$138.0 - 138.4^{d}$	+21.9	C21H36O	82.83	82.61	11.92	11.98	Methanol
a T :+		. A S	mini and	W Tommonn	Bar 71	1269 (1029)]	Ът;+		04-9050	IT Due	Holzo M W

^a Lit. m.p. 207° [ref. 4; A. Serini and W. Logemann, *Ber.*, **71**, 1362 (1938)]. ^b Lit. m.p. 204-205° [L. Ruzicka, M. W. Goldberg and H. R. Rosenberg, *Helv. Chim. Acta*, **18**, 1487 (1935)], m.p. 221-222°; [T. Reichstein and K. Gätzi, *ibid.*, **21**, 1185 (1938)]. ^c Lit. m.p. 115-116° [L. Ruzicka, M. Goldberg and E. Hardegger, *ibid.*, **22**, 1294 (1939)]. ^d Lit. m.p. 137-138° [note c].

3.92 g. of II (71.8%), m.p. 262.2–263.6°, $[\alpha]_{\rm D}$ –42.6°; lit. m.p. 255–257°,
* 257°.4

Anal. Calcd. for $C_{21}H_{32}O_2$: C, 79.69; H, 10.19. Found: C, 80.00; H, 10.27.

The 3-acetate, prepared by the action of acetic anhydride and pyridine, had m.p. 202–204°, $[\alpha]_D-40.4^\circ.$

Anal. Calcd. for C₂₃H₃₄O₃: C, 77.07; H, 9.55. Found: C, 77.43; H, 9.49.

Hydrogenation Reactions.—These were all run at room temperature and atmospheric pressure using 15–25% by weight of catalyst. The hydrogenations were stopped when uptake had essentially ceased, the catalyst removed by filtration and the filtrate taken to a residue under vacuum. This residue was then either saponified to remove traces of esters that formed during the hydrogenation from the action of the acetic acid solvent, or was completely acetylated by means of acetic anhydride in pyridine. These products were then crystallized from appropriate solvents. The results are summarized in Table I.

(3) L. Ruzicka and K. Hofmann, *Helv. Chim. Acta*, **20**, 1280 (1937).
(4) J. Kathol, W. Logemann and A. Serini, *Naturwissenschaften*, **25**, 682 (1937).

CHEMICAL RESEARCH DIVISION SCHERING CORPORATION BLOOMFIELD, NEW JERSEY

Characterization of α -Keto Acids as Quinoxalinols¹

By D. C. MORRISON

Received May 10, 1954

The reaction of pyruvic acid and its homologs with *o*-phenylenediamine is known to give 3-alkyl-2-hydroxy quinoxalines (3-alkyl-2-quinoxalinols), but these have not been used to characterize the α -keto acids. Since a number of α -keto acids, corresponding to the natural amino acids, were desired for work in progress in this Laboratory, it was decided to prepare the quinoxalinols for analytical derivatives. These compounds have an advantage over 2,4-dinitrophenylhydrazones, etc., in that most other carbonyl compounds do not readily form precipitates with the diamine, and the products are stable and easily purified substances.

The α -keto acids were obtained by a modification of the method of Wieland,² involving reaction of a Grignard reagent with diethyl oxalate. This author gives experimental details for the synthesis of only two of the keto acids, but his method was found to be easily extendable to others. Reaction

(1) The work described in this paper was aided by a grant to Prof. D. M. Greenberg from the National Cancer Institute, United States Public Health Service.

(2) T. Wieland, Ber., 81, 314 (1948); C. A., 43, 4227 (1949).

of the aqueous α -keto acid with a solution of *o*phenylenediamine in dilute acetic acid caused rapid crystallization of the desired quinoxalinol, which was obtained in about 80% yield.

Of the 3-alkyl-2-hydroxyquinoxalines with simple and unsubstituted alkyl groups, only three are mentioned in the literature. These are: 3methyl,^{3,4} 3-ethyl⁴ and 3-t-butyl.⁵ Five additional representatives of the class were prepared in the present work, and these are listed in Table I along with melting points and analyses. The previously known compounds and the unsubstituted 2-quinoxalinol⁶ are also listed for comparison.

Table	I
-------	---

3-Alkyl-2-Quinoxalinols

3-Alky14		Carbon Hydrogen					
group	M.p., °C.	Caled.	Found		Found		
None	271^{6}						
Methyl	245^{3} 250^{4}						
Ethyl	1984						
n-Propyl	182 - 183	70.21	70.57	6.38	6.51		
Isopropyl	228.5	70.21	70.35	6.38	6.42		
n-Butyl	153.5 - 154	71.29	71.43	6.93	6.55		
Isobutyl	186 - 187	71.29	71.41	6.93	6.85		
s-Butyl	180-181	71.29	71.28	6.93	6.85		
<i>t</i> -Butvl	Dec. above 300 ⁵						

^{*a*} With the exception of the *t*-butyl compound, all were prepared from the corresponding α -keto acid.

Experimental

The reaction with α -ketovaleric acid is used as a representative example. A solution of 1.143 g. (9.85 mmoles) of the keto acid in 25 ml. of water was added slowly, with stirring, to a solution of 4 g. (37.0 mmoles, an excess) of ophenylenediamine in 50 ml. of 10% acetic acid. The solution darkened temporarily, and then formed a crystalline, voluminous precipitate of 3-n-propyl-2-quinoxalinol. After standing five hours, the suspension was filtered and the product washed with water and dried in air. There was a slight loss on washing but the filtrates, when concentrated, gave a little more product. The yield of dried, white quinoxalinol, obtained in two crops, was 1.523 g. (8.1 mmoles) or 82%.

Other quinoxalinols were prepared similarly and were recrystallized from benzene or aqueous acetone for analysis.

DEPARTMENT OF PHYSIOLOGICAL CHEMISTRY UNIVERSITY OF CALIFORNIA MEDICAL SCHOOL BERKELEY, CALIFORNIA

- (3) O. Hinsberg, Ann., 292, 249 (1896).
- (4) Y. L'Italien and C. K. Banks, THIS JOURNAL, 73, 3246 (1951).
- (3) F. Krohnke, Ber., 80, 298 (1947); C. A., 42, 3747 (1948).
- (6) A. H. Gowenlock, G. T. Newbold and F. S. Spring, J. Chem. Soc., 622 (1945).